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-Abstract

The problem of time to first failure for repairable coherent systems

of independent exponential components is discussed. Several inequalities

are derived and related to previous work of the author and of Keilson to

obtain approximations with error bounds for the distribution of the time

to first failure.
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l.., Introduction

The need for quantitative methods to assess system reliability has

surfaced in evaluating such diverse systems as nuclear power plants,

automatic landing systems and chemical plants. The preliminary steps to

system reliability assessment involve identifying the various modes of

system failure and assigning parameter valves to the failure and repair

distributions. A valuable tool in the identification of system failure

is fault tree analysis, a topic of considerable research interest in the

engineering literature.

Here, my concern is with the quantitative analysis of reliability

for systems with repairable components. This usually follows qualitative

analysis, fault tree construction and assignment of parameters. From this

input one desires to calculate system characteristics, the most important

of which is the distribution of the time to first failure.

In this paper some ideas relevant to the study of time to first

failure are discussed. In particular the work of Keilson ([101, [11])

for general coherent systems, is combined with Brown ([4], [51) and results

derived here to obtain approximations with error bounds for the reliability

of coherent systems.

Sections 2 - 6 contain background material and mathematical

methodology. The main inequalities are presented in Section 7. A

numerical example illustrating the precision of the approximation for

the parallel case is presented in Section 8.
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2. Description of &he iathematical 4odel

The model which I will discuss appears extensively in the

literature (Barlow and Proschan [], Esary and Proschan [8], Brown [4],

Keilson ([10], [11]), Ross [15]). The system has n independent components.

Each alternates between independent working periods (often called up

periods) and repair (down) periods. The distribution of the up and down

periods may vary from component to component. Define:

(1 if component i is up at time t
X(t) =

0 if component is down at time t

and

X(t) = (Xl(t)...Xn (t)).

Ths system is up at time t if and only if X(t) e G, a subset of

the state space S (S contains the 2n n-tuples of O's and l's). The

system is down at time t if and only if X(t) c B, B being the complement

of G in S. The set G depends on the structure of the system. For

example a k out of n system is one which is up if and only if at least

k of its n components are up. The set G in this case consists of

all points in S with k or more l's while B consists of all points in

S with k-l or less l's.

The k out of n system is an example of a coherent system. A

coherent system is defined by the property that x e G dnd y > x

(meaning Y,1 >xi. i=l,..n) implies y c G. Thus a working system cannot

go out of order as a result of repair of one of its down components.
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The assumption of coherency is-'quite reasonable and plays an important

role in the analytic treatment of the model.

A further assumption which is often made and which will be

followed here is that both up and down periods are exponentially dis-

tributed. Under this assumption the process {X(t), t > 0} is a Markov

process. As a result the mathematical analysis is simplified, although

formidable difficulties remain. The problem of robustness of results

derived under exponentiality is of obvious importance.

3. Construction of {X(t), t. 0}

Consider a single component with exponential up times with

parameter X and exponential down times with parameter p . A convenient

construction for {X(t), t > 0},.the zero - one process representing the

component'state will now be discussed. It was employed in Brown [4]

for the study of parallel systems, and is apparently quite well known

in other contexts.

Take two independent Poisson processes, process 1 with parameter

X and process 2 with parameter p . Call the superimposed Poisson process

{N(t), t > 0} and label its event epochs by T1, T2,... Define

X(t) = X(O) If N(t) = 0, otherwise observe TN(t), the last event from

the superimposed process at or prior to time t. Set X(t) = 0 if TN(t)

came from process 1, and X(t) = 1 if TN(t) came from process 2.

Clearly the constructed process is an alternating renewal process

4
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with exponential holding times'with parameters X and i , and is thus a

representation of component behavior.

Next, perform this construction independently for the n components,

letting X(0) have whatever initial distribution is of interest. We thus

have a version of {X(t), t > 0}.

Applications of this construction will follow in Sections 4, 5

and 6.

4. Stochastic Monotonicity

Suppose we want to compare the process X(t) under two different

initial states a and 0 , with a < a (ai<f 1 , i = l,...,n). Call ,the

resulting processes X (t) and X a (t). We construct a brivariate version

{(X (t), X (t)), t> 0} by setting X (0) = a, X (0) = a and having

the transition mechanism (the 2n independent Poisson processes discussed

in Section 3) be identical for both X and X It immediately follows

that Xa (t) < X (t) for all t under the constructed version. It

further follows that for any decreasing set B(xeB and y< x implies y B)

that T (B), the first passage time to B starting in a, is stochasticallyai

smaller than T a (B). Thus for a coherent system (i.e. for B decreasing)

the time to first failure is stochastically increasing in the initial

state (under the partial ording a<<=> ai< i , i=l,...n). A consequence

is that T(B) is NBU (where 1i=i, i=-,...n), a result of Ross [15].

Furthermore Pr(X(t)BtX(0) = 1) is increasing in t.
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It is not known whether,-Tl(B) is IFRA. Brown and Rao [6]

show that the first passage time to a decreasing set for a stochastically

monotone Markov chain with monotone paths on a partially ordered finite

state space is IFRA, but in the present case the paths are not monotone.

5. Comparison of Perfect State and Steady State

Returning to the construction of X(t) given in Section 3, define

a component i activity to mean that an event takes place from either of

the two Poisson processes associated with component i. Note that a

component i activity does not necessarily imply a component i change of

state. The waiting time until activity from component i is clearly

exponential with parameter Xi + Pi. Let Zi denote this random time.

Note that Xi(Z i + s) has the steady state distribution of Xi(t) for

all s>0, independent of the initial state. Defining Z = max Zi it
l<i<n

follows that X(Z + s) has the system steady state distribution

regardless of the initial system state. Thus system equilibrium, which

is not attained for any fixed t, is attained at the random time Z.

The random variable Z is distributed as the maximum of n independent

exponential random variables with parameters Xi + 11i i = l,...n.

Denote by TE(B) the first passage time starting from the steady state

distribution restricted to G, and let q equal the steady state

probability of G. Note that Pr[TE > t) = q Pr(TE > t) for t > 0.

6



We suppress the set B in the notation when there is no room for ambiguity.
st *

By the stochastic monotonicity, T, > TE ; by the above construction
st

T, < Z + TE, where Z and TE are independent. Thus:

* st st
(1) T E  < T, T TE + Z

with Z and TE independent and Pr(TE > t) = q Pr(TE > t).

Consider the parallel system (B={O}). Here, starting in state

1 a visit to B prior to time Z is impossible. Thus:

st
(2) T, (0) Z + TE(2)

Result (1) is new, while result (2) was obtained by Brown [4] . These

inequalities are applied in Section 7.

6. Parallel System

In this section we present an improved and simplified derivation

of some of the author's results (Brown [4] ) for parallel systems.

Return to the construction of the 0 - 1 process for a single

component, with X(O) = 1. Recall that as soon as an event occurs from

the superimposed Poisson process, the process X(t) enters steady state.

Thus P10 (t) = Pr(X(t) = OIX(O) = 1), equals the steady state probability

of state 0 ( XI + u) multiplied by the probability that equilibrium is

7
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achieved prior to time t(l-e-A+P)t). Thus:

(3) Plo(t) = - (l-e"(A+V)t)

The result (3) is well known. It is usually derived by differential

equations.

It immediately follows from (3) that:

(4) Pe (t), n Xi (Xi+pi)t14 ,0 i=l "i+ i

Recall the random variable Z defined in Section 5. Let Fz denote

its cdf. Furthermore, note that T is the steady state probability. *l"

of state 0 ,which we denote by p. Thus from (4):

(5) Pl(o = pFz
1,0

Define 10 to be the Laplace transform of Pl,' and Z to be

the Laplace transform of Z. It follows from (5) that:

(a) pz(a)
(6) ~1,0 = a

Next, define W to be the waiting time, starting in steady state

with the system known to be working, for the first activity from one of

the working components (recall that a component activity is an event from

the superimposed Poisson process governing that component). Thus, W is

conditionally exponentially distributed with parameter Z(Xi+Ii), given

that a is the set of working components. The probability of a given

steady state restricted to G is given by p() = (a )i+-)
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where q = 1-p, p defined above. Thus:

(7) Pr(W>t) p * ( a ) e

From (3) and (7) we obtain:

(a pt) n V.P -( i+P-i)t
(8) ,_t) = -[+ i i e ] qPr(W>t)+p

it follows from (8) that

) (a) ) + where
0,0 a a a

(~) t
= + , atj)t) dt, and 4,W is the Laplace transform of W.- -s=O -,.Q

Furthermore since,

(10) Pl(t) t p(t-s) dF1Cs( ,0 P10 = f  P00 dFl(S)
1,0 s=O 0,0 _

it follows that:

(11) (a) ,(a) ,(a)

Combining (5), (8) and (11) we derive the main results:

(1) a) =p*z(a)

(13) *T (a) p
E 1-q*,)a)

9



Note that if N is geometric with parameter p, N=N -I, and
N

R =,. W. where {W.~i j>1} is i.'i.d. with Laplace transform ipW independent

(a) , lq,) Thus from (12) and (13), T Wi

of ~ ~ s NteN -~~a W

and St Z + N Wi, where Z is independent of
- 1

From (12) and (13), the moments are easily derived (Brown [4]).

I have not been able to find.a sample path interpretation for the

representation- TEt E W By following the process at suitable activityE i

M
epochs I obtain TE = V. where M is a stopping time, Pr(M=O) = p

1

and V1 - W. However I find it surprising that this complicated sum

behaves like a geometric sum of i.i.d. random variables, and cannot prove

it directly (i.e. without Laplace transforms as above).

7. Bounds For Keilson's Approximation

In addition to TE previously defined, Keilson [10] introduced,

TV, the post-recovery exit time. This is obtained oy stating the system

in steady state restricted to B, and waiting for the first visit to G;

the waiting time from this visit to G until the next visit to B is, by

10



definition, the post-recovery exit time. The important facts about T are:v

(i) ET, is computable for the general coherent system, while

ETE and ETl1 are only known in special cases.

(ii) TV is completely monotone.

(iii) TE 'is-the stationary renewal distribution corresponding to

TV •

Keilson's insightful approach for the approximation of the

reliability of repairable systems is to employ an exponential distribution

with mean ETV as an approximation for TV s TE and Tl. The quantity ETV  is

easily computable, and Keilson motivates the general principle that for

highly reliable systems TV s TE and T1  should have approximately the same

distribution and that this distribution should be approximately exponential.

The approximate exponentiality and equality of distributions needs

to be quantified. As TV and TE are completely monotone (i.e. mixtures of

exponential distributions), Keilson looked at the problem of approximating

completely monotone distributions by exponential distributions. He proposed

that for X completely monotone, that p = EX - 1, be used as a distance

I ... . ..~~ ~ ~~ ~ ~~~~. . ...... .. lIll.. . . . . Il i... .r l .... . . . " .. . . . . IlI l N . .. . . ..



measure between X and an exponential distribution with the same mean.

Brown [5] , obtained bounds on tf distance to exponentiality.

Assume that F is IMRL (increasing mean residual life) a larger class than

completely monotone, and that G is the stationary renewal distribution

corresponding to F. Then:

(14) max(supIr (t) - e't/ I, supIr(t) - Qt)j,
t t

supIG(t) - e-tPI, supiG(t) - et/I'Gi) P = l
t t p+l PG

EX
2

where PG : , the mean of G. Moreover the bound for suplF(t) - I

and supIF(t) - ?(t)I is sharp even within the subclass of completely

monotone distributions.

Returning to first passage times, we let F be the distribution of

TV and G the distribution of TE . Then from (14):

(15) max (supiFT (t)-e t/ETVI, suplFT*(t)-e -t/ETV 1'

t V E

supirT (t)--rT*(t)I, spFT()etE* ET V
SETE

To illustrate the parallel case recall that W is the waiting time

until activity from a working component, starting in steady state restricted

to G (i.e. at least one component is working). The random variable Is

12



distributed as a mixture of exponential distributions. It is exponential

with parameter E(X1 i ) with probability p (c).

It turns out (Brown [4] p.386) that:

(17) ETV n 1
P ' p(EU )1 N

Moreover since TE = i  and EU EW

we have:

(18) ETE - -EW

p p

It also follows from (14) (since T, is IMRL) that:
* PE

*tE <E
(16) sup(FT * (t)-e t/ETEj

t E E

Thus:

ETE
(19) PV - -1 = (EUEU I)-l

Furthermore:
* ETE  -EW 2

(20) PE = 2 ETE -2 -1) =PPw

2(ET E 2(Ew)

Thus the Keilson distance from exponentiality of TE (pE) equals

p, the steady state probability of system failure, multiplied by pW, the

Keilson distance from exponentiality of W. In both (19) and (20) the p

parameters are explicitly available in terms of X1  i.P i=1, ...n.

13



Finally, inequalities.(1) and (2) relate the approximate ex-

ponentiality of TE and T to T 1 ) From (1):

(21) FT(t) f t) f T
E 1 E E

From (21) we obtain:

(22) 0 FT (t) - 'FT*(t) EFT*(t-Z) - T*(t)
1 E

Since TE is completely monotone its pdf is decreasing. Therefore

the interval of length z with highest probability is (O,z]. Thus from (22):

(23) FT (t) - FT*(t) _ EFT*(Z)
1 E E

But, since TE has a decreasing pdf, F(z) is concave and thus:

(24) EFT*(Z) f FT*(EZ)
E E

Next, since TE is completely monotone it is also DFR (decreasing

failure rate). If follows from Brown [5], that:

EZ +~

(25) FT*(EZ) s l-e-(E + PE) < Z

E E

Combining (21) - (25) we arrive at:

(26) OsFT (t)- FT*(t) S Er + P* for all t.
1 E E

Furthermore, it follows from (15) and (26) that:

14



V

(27) supIFT (t) e- t+ETvi 0 + EZ
t 1 F E

and from (16) and (26) that:

(28) suPIT T(t) - e tiET E P *(PE+2) + v
t 1 (p+) E

Lastly, since TE is DFR and has failure rate IIETV at t = 0, it

follows that F e tIETV. Thus from (21) - (24):
E

(29) suplIFT (t) - rT* (t)l I-e-EZ/ETv -

t 1 E E-v

From (15) and (29) we obtain:

(30) supIFT (t) -tETV EZ

t 1 eV+ ETV

8. Numerical Example

Consider a parallel system of three identical components with failure

rate .01 and repair rate 1.

Here ETV = 343,433.33, ETE = 345,181.85, PV = .005091,

PV _ - v8 T

pvl.1  .005066, oE = ,08 and EZ = 1.815182. Consequently FT (t) (t)
FTt)

and e-tIETV are all within a distance of .005066 
for all t. Furthermore

supIrT (t)- e'E I 5 E = 108 and sup Ir-(t)-et l El < 2p + EEZ .00000528.

TE 
E f T.. E r
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